Tag Archives: genus

Male Fern Rhizome – Dryopteris crassirhizoma nakai

Male Fern Rhizome – Dryopteris crassirhizoma

Sources : Male Fern Rhizome is the dried rhizome and front bases of Dryopteris crassirhizoma Nakai. The drug is collected in autumn, pared off front and fibrous root, washed clean, dried in the sun.

Action: To remove heat, counteract toxicity, and expel intestina worms. Rhizoma Dryopteris Crassirhizomae (carbonized): to arrest bleeding.

Indications: Abdominal pain due to intestinal worm, sores.

Rhizoma Dryopteris Crassirhizomae (Carbonized): Abnormal uterine bleeding.

A fern is any one of a group of about 12,000 species of plants. Unlike mosses, they have xylem and phloem (making them vascular plants). They have stems, leaves, and roots like other vascular plants. Ferns do not have either seeds or flowers (they reproduce via spores).

By far the largest group of ferns are the leptosporangiate ferns, but ferns as defined here (also called monilophytes) include horsetails, whisk ferns, marattioid ferns, and ophioglossoid ferns. The term pteridophyte also refers to ferns (and possibly other seedless vascular plants; see classification section below).

Ferns first appear in the fossil record 360 million years ago in the Carboniferous but many of the current families and species did not appear until roughly 145 million years ago in the late Cretaceous (after flowering plants came to dominate many environments).

Ferns are not of major economic importance, but some are grown or gathered for food, as ornamental plants, or for remediating contaminated soils. Some are significant weeds. They also feature in mythology, medicine, and art.

Life cycle

Gametophyte (thalloid green mass) and sporophyte (ascendent frond) of Onoclea sensibilis

Ferns are vascular plants differing from lycophytes by having true leaves (megaphylls). They differ from seed plants (gymnosperms and angiosperms) in their mode of reproduction—lacking flowers and seeds. Like all other vascular plants, they have a life cycle referred to as alternation of generations, characterized by a diploid sporophytic and a haploid gametophytic phase. Unlike the gymnosperms and angiosperms, the ferns’ gametophyte is a free-living organism.

Life cycle of a typical fern:

  1. A sporophyte (diploid) phase produces haploid spores by meiosis.
  2. A spore grows by mitosis into a gametophyte, which typically consists of a photosynthetic prothallus.
  3. The gametophyte produces gametes (often both sperm and eggs on the same prothallus) by mitosis.
  4. A mobile, flagellate sperm fertilizes an egg that remains attached to the prothallus.
  5. The fertilized egg is now a diploid zygote and grows by mitosis into a sporophyte (the typical “fern” plant).

Fern ecology

Ferns at Muir Woods, California

The stereotypic image of ferns growing in moist shady woodland nooks is far from being a complete picture of the habitats where ferns can be found growing. Fern species live in a wide variety of habitats, from remote mountain elevations, to dry desert rock faces, to bodies of water or in open fields. Ferns in general may be thought of as largely being specialists in marginal habitats, often succeeding in places where various environmental factors limit the success of flowering plants. Some ferns are among the world’s most serious weed species, including the bracken fern growing in the British highlands, or the mosquito fern (Azolla) growing in tropical lakes, both species forming large aggressively spreading colonies. There are four particular types of habitats that ferns are found in: moist, shady forests; crevices in rock faces, especially when sheltered from the full sun; acid wetlands including bogs and swamps; and tropical trees, where many species are epiphytes (something like a quarter to a third of all fern species).

Many ferns depend on associations with mycorrhizal fungi. Many ferns only grow within specific pH ranges; for instance, the climbing fern (Lygodium) of eastern North America will only grow in moist, intensely acid soils, while the bulblet bladder fern (Cystopteris bulbifera), with an overlapping range, is only found on limestone.

The spores are rich in lipids, protein and calories and some vertebrates so eat these. The European woodmouse (Apodemus sylvaticus) has been found to eat the spores of Culcita macrocarpa and the bullfinch (Pyrrhula murina) and the short-tailed bat (Mystaina tuberculata) also eat fern spores.

Fern structure

Ferns at the Royal Melbourne Botanical Gardens

Tree ferns, probably Dicksonia antarctica, growing in Nunniong, Australia

Like the sporophytes of seed plants, those of ferns consist of:

  • Stems: Most often an underground creeping rhizome, but sometimes an above-ground creeping stolon (e.g., Polypodiaceae), or an above-ground erect semi-woody trunk (e.g., Cyatheaceae) reaching up to 20 m in a few species (e.g., Cyathea brownii on Norfolk Island and Cyathea medullaris in New Zealand).
  • Leaf: The green, photosynthetic part of the plant. In ferns, it is often referred to as a frond, but this is because of the historical division between people who study ferns and people who study seed plants, rather than because of differences in structure. New leaves typically expand by the unrolling of a tight spiral called a crozier or fiddlehead. This uncurling of the leaf is termed circinate vernation. Leaves are divided into three types:
    • Trophophyll: A leaf that does not produce spores, instead only producing sugars by photosynthesis. Analogous to the typical green leaves of seed plants.
    • Sporophyll: A leaf that produces spores. These leaves are analogous to the scales of pine cones or to stamens and pistil in gymnosperms and angiosperms, respectively. Unlike the seed plants, however, the sporophylls of ferns are typically not very specialized, looking similar to trophophylls and producing sugars by photosynthesis as the trophophylls do.
    • Brophophyll: A leaf that produces abnormally large amounts of spores. Their leaves are also larger than the other leaves but bear a resemblance to trophophylls.
  • Roots: The underground non-photosynthetic structures that take up water and nutrients from soil. They are always fibrous and are structurally very similar to the roots of seed plants.

The gametophytes of ferns, however, are very different from those of seed plants. They typically consist of:

  • Prothallus: A green, photosynthetic structure that is one cell thick, usually heart or kidney shaped, 3–10 mm long and 2–8 mm broad. The prothallus produces gametes by means of:
    • Antheridia: Small spherical structures that produce flagellate sperm.
    • Archegonia: A flask-shaped structure that produces a single egg at the bottom, reached by the sperm by swimming down the neck.
  • Rhizoids: root-like structures (not true roots) that consist of single greatly elongated cells, water and mineral salts are absorbed over the whole structure. Rhizoids anchor the prothallus to the soil.

One difference between sporophytes and gametophytes might be summed up by the saying that “Nothing eats ferns, but everything eats gametophytes.” This is an over-simplification, but it is true that gametophytes are often difficult to find in the field because they are far more likely to be food than are the sporophytes.

Evolution and classification

Ferns first appear in the fossil record in the early-Carboniferous period. By the Triassic, the first evidence of ferns related to several modern families appeared. The “great fern radiation” occurred in the late-Cretaceous, when many modern families of ferns first appeared.

One problem with fern classification is the problem of cryptic species. A cryptic species is a species that is morphologically similar to another species, but differs genetically in ways that prevent fertile interbreeding. A good example of this is the currently designated species Asplenium trichomanes, the maidenhair spleenwort. This is actually a species complex that includes distinct diploid and tetraploid races. There are minor but unclear morphological differences between the two groups, which prefer distinctly differing habitats. In many cases such as this, the species complexes have been separated into separate species, thus raising the number of overall fern species. Possibly many more cryptic species are yet to be discovered and designated.

Ferns have traditionally been grouped in the Class Filices, but modern classifications assign them their own phylum or division in the plant kingdom, called Pteridophyta, also known as Filicophyta. The group is also referred to as Polypodiophyta, (or Polypodiopsida when treated as a subdivision of tracheophyta (vascular plants), although Polypodiopsida sometimes refers to only the leptosporangiate ferns). The term “pteridophyte” has traditionally been used to describe all seedless vascular plants, making it synonymous with “ferns and fern allies”. This can be confusing since members of the fern phylum Pteridophyta are also sometimes referred to as pteridophytes. The study of ferns and other pteridophytes is called pteridology, and one who studies ferns and other pteridophytes is called a pteridologist.

Traditionally, three discrete groups of plants have been considered ferns: two groups of eusporangiate ferns—families Ophioglossaceae (adders-tongues, moonworts, and grape-ferns) and Marattiaceae—and the leptosporangiate ferns. The Marattiaceae are a primitive group of tropical ferns with a large, fleshy rhizome, and are now thought to be a sibling taxon to the main group of ferns, the leptosporangiate ferns. Several other groups of plants were considered “fern allies”: the clubmosses, spikemosses, and quillworts in the Lycopodiophyta, the whisk ferns in Psilotaceae, and the horsetails in the Equisetaceae. More recent genetic studies have shown that the Lycopodiophyta are more distantly related to other vascular plants, having radiated evolutionarily at the base of the vascular plant clade, while both the whisk ferns and horsetails are as much “true” ferns as are the Ophioglossoids and Marattiaceae. In fact, the whisk ferns and Ophioglossoids are demonstrably a clade, and the horsetails and Marattiaceae are arguably another clade. Molecular data—which remain poorly constrained for many parts of the plants’ phylogeny — have been supplemented by recent morphological observations supporting the inclusion of Equisetaceae within the ferns, notably relating to the construction of their sperm, and peculiarities of their roots (Smith et al. 2006, and references therein). However, there are still differences of opinion about the placement of the Equisetum species (see Equisetopsida for further discussion).

One possible means of treating this situation is to consider only the leptosporangiate ferns as “true” ferns, while considering the other three groups as “fern allies”. In practice, numerous classification schemes have been proposed for ferns and fern allies, and there has been little consensus among them. A new classification by Smith et al. (2006) is based on recent molecular systematic studies, in addition to morphological data. This classification divides extant ferns into four classes:

  • Psilotopsida (whisk ferns and ophioglossoid ferns), about 92 species
  • Equisetopsida (horsetails), about 15 species
  • Marattiopsida, about 150 species
  • Polypodiopsida (leptosporangiate ferns), about 9000 species

The last group includes most plants familiarly known as ferns. Modern research supports older ideas based on morphology that the Osmundaceae diverged early in the evolutionary history of the leptosporangiate ferns; in certain ways this family is intermediate between the eusporangiate ferns and the leptosporangiate ferns.

Cultural connotations

Blätter des Manns Walfarn. by Alois Auer, Vienna: Imperial Printing Office, 1853

Ferns figure in folklore, for example in legends about mythical flowers or seeds.[8] In Slavic folklore, ferns are believed to bloom once a year, during the Ivan Kupala night. Although alleged to be exceedingly difficult to find, anyone who sees a “fern flower” is thought to be guaranteed to be happy and rich for the rest of their life. Similarly, Finnish tradition holds that one who finds the “seed” of a fern in bloom on Midsummer night will, by possession of it, be guided and be able to travel invisibly to the locations where eternally blazing Will o’ the wisps called aarnivalkea mark the spot of hidden treasure. These spots are protected by a spell that prevents anyone but the fern-seed holder from ever knowing their locations.

“Pteridomania”‘ is a term for the Victorian era craze of fern collecting and fern motifs in decorative art including pottery, glass, metals, textiles, wood, printed paper, and sculpture “appearing on everything from christening presents to gravestones and memorials.” The fashion for growing ferns indoors led to the development of the Wardian case, a glazed cabinet that would exclude air pollutants and maintain the necessary humidity.

Barnsley fern created using chaos game, through an Iterated function system (IFS).

The dried form of ferns was also used in other arts, being used as a stencil or directly inked for use in a design. The botanical work, The Ferns of Great Britain and Ireland, is a notable example of this type of nature printing. The process, patented by the artist and publisher Henry Bradbury, impressed a specimen on to a soft lead plate. The first publication to demonstrate this was Alois Auer’s The Discovery of the Nature Printing-Process.

Medicinal Value

Ferns are sometimes used in medicine to treat cuts and clean them out. Ferns are also good bandages if you are stuck out in the wild. Rubbing a sword fern frond spore-side-down on a stinging nettle sting removes the stinging.

Misunderstood names

Several non-fern plants are called “ferns” and are sometimes confused with true ferns. These include:

  • “Asparagus fern”—This may apply to one of several species of the monocot genus Asparagus, which are flowering plants.
  • “Sweetfern”—A flowering shrub of the genus Comptonia.
  • “Air fern”—A group of animals called hydrozoan that are distantly related to jellyfish and corals. They are harvested, dried, dyed green, and then sold as a “plant” that can “live on air”. While it may look like a fern, it is merely the skeleton of this colonial animal.
  • “Fern bush”—Chamaebatiaria millefolium—a rose family shrub with fern-like leaves.

In addition, the book Where the Red Fern Grows has elicited many questions about the mythical “red fern” named in the book. There is no such known plant, although there has been speculation that the oblique grape-fern, Sceptridium dissectum, could be referred to here, because it is known to appear on disturbed sites and its fronds may redden over the winter.

Male Fern Rhizome,Common Carpesium Fruits,Common Carpesium Fruit seed,Common Carpesium Fruit varieties,grow Common Carpesium Fruit,Common Carpesium Fruit,Common Carpesium Fruit growing,seedless Common Carpesium Fruit,Common Carpesium Fruit nutrition,Common Carpesium Fruit plants,Common Carpesium Fruit plant,Common Carpesium Fruit planting,Common Carpesium Fruit vegetable,Common Carpesium Fruit juice,sugar baby Common Carpesium Fruit,Common Carpesium Fruit nutrition facts,growing Common Carpesium Fruits,best Common Carpesium Fruit,small Common Carpesium Fruit,black Common Carpesium Fruit,Common Carpesium Fruit jubilee,gardening Common Carpesium Fruit,Common Carpesium Fruit recipes,ripe Common Carpesium Fruit,moon and stars Common Carpesium Fruit,crimson sweet Common Carpesium Fruit,Common Carpesium Fruit facts,strawberry Common Carpesium Fruit,organic Common Carpesium Fruit,seedless Common Carpesium Fruits,Common Carpesium Fruit nutritional information,Common Carpesium Fruit fruit,Common Carpesium Fruit tomato,grow Common Carpesium Fruits,Male Fern Rhizome for sale,fresh Common Carpesium Fruit,how to grow Common Carpesium Fruits,eating Common Carpesium Fruit,seedless Male Fern Rhizome,Common Carpesium Fruit growers,Common Carpesium Fruit production,Common Carpesium Fruit calories,Common Carpesium Fruit calorie,buy Common Carpesium Fruit,Common Carpesium Fruit cross,Common Carpesium Fruit types,yellow Common Carpesium Fruit,Common Carpesium Fruit rind,planting Common Carpesium Fruits,Common Carpesium Fruit seed tea,Common Carpesium Fruit health,Common Carpesium Fruit cocktail,Common Carpesium Fruit drink,Common Carpesium Fruit harvest,Common Carpesium Fruit benefits,Common Carpesium Fruit theme,Common Carpesium Fruit smoothies

Monarda

Monarda

Monarda (bee balm, horsemint, oswego tea, or bergamot) is a genus consisting of roughly 16 species of erect, herbaceous annual or perennial plants in the Lamiaceae, indigenous to North America. Ranging in height from 1 to 3 feet (0.2 to 0.9 m), the plants have an equal spread, with slender and long-tapering (lanceolate) leaves; the leaves are opposite on stem, smooth to nearly hairy, lightly serrated margins, and range from 3 to 6 inches (7 to 14 cm) long. In all species, the leaves, when crushed, exude a spicy, highly fragrant oil. Of the species listed, M. didyma (Oswego Tea) contains the highest concentration of this oil. The genus was named for Nicolás Monardes who wrote a book in 1574 describing plants found in the New World.

Blackfoot

Menominee

Bee Balm

Uses : Several bee balm species (Monarda fistulosa and Monarda didyma) have a long history of use as a medicinal plants by many Native Americans including the Blackfoot, Menominee, Ojibwa, Winnebago and others. The Blackfoot Indians recognized the strong antiseptic action of these plants, and used poultices of the plant for skin infections and minor wounds. A tea made from the plant was also used to treat mouth and throat infections caused by dental caries and gingivitis. Bee balm is the natural source of the antiseptic Thymol, the primary active ingredient in modern commercial mouthwash formulas. The Winnebago used a tea made from bee Balm as a general stimulant. Bee balm was also used as a carminative herb by Native Americans to treat excessive flatulence. An infusion of crushed Monarda leaves in boiling water has been known to treat headaches and fevers.

Although somewhat bitter, due to the thymol content in the plants leaves and buds, the plant tastes like a mix of spearmint and peppermint with oregano, to which it is closely related. Bee balm was traditionally used by Native Americans as a seasoning for wild game, particularly birds. The plants are widespread across North America and can be found in moist meadows, hillsides, and forest clearings up to 5,000 feet in elevation.

Flowers, species, cultivars : Monarda species include annual and perennial upright growing herbaceous plants with lanceolate to ovate shaped leaves. The flowers are tubular with bilateral symmetry and bilabiate; with upper lips narrow and the lower ones broader and spreading or deflexed. The flowers are single or in some cultivated forms double, generally hermaphroditic with two stamens. Plants bloom in mid- to late summer and the flowers are produced in dense profusion at the ends of the stem and/or in the stem axils. The flowers typically are crowded into head-like clusters with leafy bracts. Flower colors vary, with wild forms of the plant having crimson-red to red, pink and light purple hues. M. didyma has bright, carmine red blossoms; M. fistulosa—the “true” wild bergamot—has smokey pink flowers. M. citriodora and M. pectinata have light lavender to lilac-colored blooms and have slightly decreased flower quantities. Both species are commonly referred to as “Lemon Mint.” There are over 50 commercial cultivars and hybrids, ranging in color from candy-apple red to pure white to deep blue, but these plants tend to be smaller than wild species, and often developed to combat climatic or pest conditions. Other hybrids have been developed to produce essential oils for food, flavoring, or medicine. “M. didyma” species can grow up to 6 feet tall. Seed collected from hybrids—as with most hybridized plants—does not produce identical plants to the parent. A number of hybrids also occur in the wild.

Monarda seeds,Monardas,Monarda seed,Monarda varieties,grow Monarda,Monarda,Monarda growing,seedless Monarda,Monarda nutrition,Monarda plants,Monarda plant,Monarda planting,Monarda vegetable,Monarda juice,sugar baby Monarda,Monarda nutrition facts,growing Monardas,best Monarda,small Monarda,black Monarda,Monarda jubilee,gardening Monarda,Monarda recipes,ripe Monarda,moon and stars Monarda,crimson sweet Monarda,Monarda facts,strawberry Monarda,organic Monarda,seedless Monardas,Monarda nutritional information,Monarda fruit,Monarda tomato,grow Monardas,Monarda seeds for sale,fresh Monarda,how to grow Monardas,eating Monarda,seedless Monarda seeds,Monarda growers,Monarda production,Monarda calories,Monarda calorie,buy Monarda,Monarda cross,Monarda types,yellow Monarda,Monarda rind,planting Monardas,Monarda seed tea,Monarda health,Monarda cocktail,Monarda drink,Monarda harvest,Monarda benefits,Monarda theme,Monarda smoothies

Fennel – Foeniculum vulgare

Fennel – Foeniculum vulgare

Fennel (Foeniculum vulgare) is a plant species in the genus Foeniculum (treated as the sole species in the genus by most botanists). It is a member of the family Apiaceae (formerly the Umbelliferae).

It is a hardy, perennial, umbelliferous herb, with yellow flowers and feathery leaves.

It is indigenous to the shores of the Mediterranean, but has become widely naturalised in many parts of the world, especially on dry soils near the sea-coast and on riverbanks.

It is a highly aromatic and flavorful herb with culinary and medicinal uses, and, along with the similar-tasting anise, is one of the primary ingredients of absinthe.

Florence fennel or finocchio is a selection with a swollen, bulb-like stem base that is used as a vegetable.

Fennel is used as a food plant by the larvae of some Lepidoptera species including the mouse moth and the anise swallowtail.

fennel, foeniculum, vulgare, medicinal, pepper, articles, spices, coriander, culinary, other, section, herbs, foeniculum vulgare, leaves, used, edit section, which, have, articles with, shift, unsourced, citation, needed, citation needed, appearance, production, links, seeds, apiaceae, etymology, history, cultivation, pmid, with unsourced, statements, unsourced statements, wiki, template, herb, like, etymology history, cultivation uses, similar species, plants, hemlock, identifier, leaf, medicinal uses,lomatium, ratings, ferula, sources, flowers, some, culinary uses, eyes, other uses, also, wikipedia fennel, category articles, search, reliable, reliable sources, food, english, india, about, invasive, herbal, white, your, herbs spices, black, masala, edit this, needs, genus, plant species, most, mediterranean, many, florence, florence fennel

Agrimoni – Agrimonia Pilos Ledeb

Agrimoni – Agrimonia Pilos Ledeb

Agrimony (Agrimonia) is a genus of 12-15 species of perennial herbaceous flowering plants in the family Rosaceae, native to the temperate regions of the Northern Hemisphere, with one species also in Africa. The species grow to between 0.5-2 m tall, with interrupted pinnate leaves, and tiny yellow flowers borne on a single (usually unbranched) spike.

Agrimonia species are used as food plants by the larvae of some Lepidoptera species including Grizzled Skipper (recorded on A. eupatoria) and Large Grizzled Skipper.

Species
  • Agrimonia eupatoria – Common Agrimony (Europe, Asia, Africa)
  • Agrimonia gryposepala – Tall Hairy Agrimony (North America)
  • Agrimonia incisa – Incised Agrimony (North America)
  • Agrimonia coreana – Korean Agrimony (eastern Asia)
  • Agrimonia microcarpa – Smallfruit Agrimony (North America)
  • Agrimonia nipponica – Japanese Agrimony (eastern Asia)
  • Agrimonia parviflora – Harvestlice Agrimony (North America)
  • Agrimonia pilosa – Hairy Agrimony (eastern Europe, Asia)
  • Agrimonia procera – Fragrant Agrimony (Europe)
  • Agrimonia pubescens – Soft Agrimony (North America)
  • Agrimonia repens – Short Agrimony (southwest Asia)
  • Agrimonia rostellata – Beaked Agrimony (North America)
  • Agrimonia striata – Roadside Agrimony (North America)

Medicinal value

Agrimony has a long history of medicinal use. The English poet Michael Drayton once hailed it as an “all-heal,” and through the ages it did seem to be a Panacea. The ancient Greeks used Agrimony to treat eye ailments, and it was made into brews to cure diarrhea and disorders of the gallbladder, liver, and kidneys. Anglo-Saxons made a solution from the leaves and seeds for healing wounds; this use continued through the Middle Ages and afterward, in a preparation called eau d’arquebusade , or “musket-shot water.”Later, agrimony was prescribed for athlete’s foot. In the United States and Canada, and late into the 19th century,the plant was prescribed for many of these illnesses and more: for skin diseases, asthma, coughs, and gynecological complaints, and as a gargling solution for sore throats.

Flolklore

Although the plant has no narcotic properties, tradition holds that when placed under a person’s head, Agrimony will induce a deep sleep that will last until removed.

Agrimony, Agrimonia, genus, species, perennial herbaceous, flowering plants, family Rosaceae, native, temperate regions, Northern Hemisphere, species, Africa, The species,  interrupted, pinnate leaves, tiny yellow flowers, borne  spike, flower, herb, leaf


Proteas

Proteas

Protea (pronounced /ˈproʊtiːə/) is both the botanical name and the English common name of a genus of flowering plants, sometimes also called sugarbushes.

The genus Protea was named in 1735 by Carolus Linnaeus after the Greek god Proteus who could change his form at will, because proteas have such different forms. Linneaus’s genus was formed by merging a number of genera previously published by Herman Boerhaave, although precisely which of Boerhaave’s genera were included in Linnaeus’s Protea varied with each of Linnaeus’s publications.

Proteas attracted the attention of botanists visiting the Cape of Good Hope in the 1600s. Many species were introduced to Europe in the 1700s, enjoying a unique popularity at the time amongst botanists.

The Proteaceae family to which Proteas belong is an ancient one. Its ancestors grew in Gondwanaland, 300 million years ago. Proteaceae is divided into two subfamilies: the Proteoideae, best represented in southern Africa, and the Grevilleoideae, concentrated in Australia and South America and the other smaller segments of Gondwanaland that are now part of eastern Asia. Africa shares only one genus with Madagascar, whereas South America and Australia share many common genera — this indicates they separated from Africa before they separated from each other.

Most protea occur south of the Limpopo River. However, Protea kilimanjaro is found in the chaparral zone of Mount Kenya National Park. 92% of the species occur only in the Cape Floristic Region, a narrow belt of mountainous coastal land from Clanwilliam to Grahamstown, South Africa. The extraordinary richness and diversity of species characteristic of the Cape Flora is thought to be caused in part by the diverse landscape where populations can become isolated from each other and in time develop into separate species.

Species

  • Protea section Leiocephalae
    • Protea caffra (Common Protea)
    • Protea dracomontana
    • Protea glabra
    • Protea inopina
    • Protea nitida
    • Protea nubigena
    • Protea parvula
    • Protea petiolaris
    • Protea rupicola
    • Protea simplex
  • Protea section Paludosae
    • Protea enervis
  • Protea section Patentiflorae
    • Protea angolensis
    • Protea comptonii
    • Protea curvata
    • Protea laetans
    • Protea madiensis
    • Protea rubropilosa
    • Protea rupestris

proteas,protea,proteas plants,proteas plant,growing proteas,proteas flower,proteas flowers,hawaiian proteas,grow proteas,south african proteas,proteas south africa,and proteas,are proteas,buy proteas,called proteas,for proteas,is proteas,king proteas,proteas of,the proteas,proteas from,proteas meaning african proteas,protea species,protea burchellii,protea cuttings,protea nursery,protea plants,protea plant,to grow proteas,protea seeds,safari sunset protea,how to grow proteas,protea caffra,protea eximia,protea cultivation,protea botanical,protea nerifolia,protea susara,blushing bride protea,protea laurifolia,protea longifolia,protea repens,protea seed,grow protea,growing protea,protea propagation,protea obtusifolia,protea punctata,buy protea plants,protea plants for sale,protea from seed,cushion proteas,how to grow proteaproteas for sale,king protea plant,protea cynaroides,growing proteas in the king protea,king protea,proteas south,proteas syndrome,protea bloom,protea flower,proteas wiki,

Plumeria

Plumeria

Plumeria (common name Frangipani; syn. Himatanthus Willd. ex Roem. & Schult.) is a small genus of 7-8 species native to tropical and subtropical Americas.The genus consists of mainly deciduous shrubs and trees. P. rubra (Common Frangipani, Red Frangipani, Champa), native to Mexico, Central America, Colombia, and Venezuela,produces flowers ranging from yellow to pink depending on form or cultivar. From Mexico and Central America, Plumeria has spread to all tropical areas of the world. In Hawaii, it is grown for the production of leis.

Plant

Plumeria is related to the Oleander, Nerium oleander, and both possess poisonous, milky sap, rather similar to that of Euphorbia. Each of the separate species of Plumeria bears differently shaped alternate leaves and their form and growth habits are also distinct. The leaves of P. alba are quite narrow and corrugated, while leaves of P. pudica have an elongated oak shape and glossy, dark green color. P. pudica is one of the everblooming types with non-deciduous, evergreen leaves. Another species that retains leaves and flowers in winter is P. obtusa; though its common name is “Singapore,” it is originally from Colombia. Frangipani can also be found in Eastern Africa, where they are sometimes referred to in Swahili love poems.

Plumeria flowers are most fragrant at night in order to lure sphinx moths to pollinate them. The flowers have no nectar, and simply dupe their pollinators. The moths inadvertently pollinate them by transferring pollen from flower to flower in their fruitless search for nectar.

“Plumeria” species are easily propagated by taking a cutting of leafless stem tips in Spring and allowing them to dry at the base before inserting them into soil. Make sure soil has good drainage, to prevent root rot. They are also propagated via tissue culture both from cuttings of freshly elongated stems and aseptically germinated seed. Pruning is best accomplished in the winter for deciduous varieties, or whenever cuttings are desired.

There are over 300 named varieties of Plumeria.

Etymology and common names

The genus, originally spelled Plumiera, is named in honor of the seventeenth-century French botanist Charles Plumier, who traveled to the New World documenting many plant and animal species. The common name “Frangipani” comes from an Italian noble family, a sixteenth-century marquess of which invented a plumeria-scented perfume. Many English speakers also simply use the generic name “plumeria”.

plumerias,plumeria cuttings,plumeria flowers,plumeria plant,plumeria tree,growing plumeria,plumeria flower,plumeria,plumeria seeds,plumeria bloom,plumeria plants,plumeria rubra,plumeria seed,plumeria trees,hawaiian plumeria,plumeria jewelry,plumeria scent,exotic plumeria,plumeria frangipani,dwarf plumeria,plumeria obtusa,pink plumeria,tropical plumeria,plumeria leaves,plumeria society,plumeria forum,grow plumeria,how to grow plumeria,planting plumeria,plumeria garden,plumeria varieties,plumeria species,plumeria photos,plumeria rings,plumeria watering,plumeria hibiscus,buy plumeria,plumeria sale,yellow plumeria,white plumeria,plumeria gallery,plumeria soil,plumeria indoors,trimming plumeria,pruning plumeria,prune plumeria,ordering plumeria,plumeria information,plumeria order,plumeria prices,purchase plumeria,plumeria types,plumeria colors,